Neural Networks for Prediction of Nucleotide Sequences by using Genomic Signals
نویسندگان
چکیده
The conversion of symbolic sequences into complex genomic signals allows using signal processing methods for the handling and analysis of nucleotide sequences. This methodology reveals surprizing regularities, both locally and at a global scale, allowing us to predict nucleotides in a sequence, when knowing the preceding ones. Such experiments have a major biologic significance, as they explore the possibility and the efficiency of error correction in processes like replication, transcription and translation. Key-Words: Genomic signals, Nucleotide Sequences, Time series prediction, Sequence prediction, Neural networks
منابع مشابه
Forecasting of rainfall using different input selection methods on climate signals for neural network inputs
Long-term prediction of precipitation in planning and managing water resources, especially in arid and semi-arid countries such as Iran, has a great importance. In this paper, a method for predicting long-term precipitation using weather signals and artificial neural networks is presented. For this purpose, climatic data (large-scale signals) and meteorological data (local precipitation and tem...
متن کاملDetermination of Blood Glucose Concentration by Using Wavelet Transform and Neural Networks
Background: Early and non-invasive determination of blood glucose level is of great importance. We aimed to present a new technique to accurately infer the blood glucose concentration in peripheral blood flow using non-invasive optical monitoring system. Methods: The data for the research were obtained from 900 individuals. Of them, 750 people had diabetes mellitus (DM). The system was ...
متن کاملDetecting and Predicting Muscle Fatigue during Typing By SEMG Signal Processing and Artificial Neural Networks
Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigu...
متن کاملMachine learning approaches for the prediction of signal peptides and other protein sorting signals.
Prediction of protein sorting signals from the sequence of amino acids has great importance in the field of proteomics today. Recently, the growth of protein databases, combined with machine learning approaches, such as neural networks and hidden Markov models, have made it possible to achieve a level of reliability where practical use in, for example automatic database annotation is feasible. ...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008